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Abstract

Convection heat transfer in a rectangular microchannel is investigated. The flow is assumed to be fully developed
both thermally and hydrodynamically. The H2-type boundary condition, constant axial and peripheral heat flux, is
applied at the walls of the channel. Since the velocity profile for a rectangular channel is not known under the slip flow
conditions, the momentum equation is first solved for velocity. The resulting velocity profile is then substituted into the
energy equation. The integral transform technique is applied twice, once for velocity and once for temperature. The
results show a similar behavior to previous studies on circular microtubes. The values of the Nusselt number are given

for varying aspect ratios. © 2001 Published by Elsevier Science Ltd.

1. Introduction

Microscale heat transfer has been gaining more in-
terest as the size of the devices decreases, as in electronic
devices, since the amount of heat that needs to be dis-
sipated per unit area increases. The performance of these
devices is directly related to the temperature, therefore it
is a critical issue to keep the temperature within certain
limits.

As the size of a channel is reduced, the continuum
flow assumption is no longer valid, however there is a
certain value for the size that one can still apply Navier—
Stokes equations with some modifications on the
boundary conditions [1,2]. The flow in these conditions
is called slip flow. Knudsen number is defined to rep-
resent the rarefaction effects. It is the ratio of the mean
free path to the characteristic length of the channel.
Beskok et al. [3] give the range for the Knudsen number
in slip-flow regime as 0.001 < Kn < 0.1.

Velocity slip and temperature jump are the two major
effects of rarefaction. These are quantified by using the
Knudsen number. In this study, to represent the velocity
slip, a parameter called “slip coefficient” was defined as
the ratio of the velocity of the fluid at the wall to the
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mean velocity. The variation of this parameter with the
Knudsen number will be shown for different aspect ra-
tios.

Convection heat transfer in rectangular macrochan-
nels has been solved by numerical and analytical means
over the years [4-6]. No attempt has been made, how-
ever for solving the same problem in microchannels,
although the solution for microtubes is available in the
literature. Flow in a microtube was investigated by
several researchers [7-10]. In these studies, the effects of
velocity slip and temperature jump at the wall and vis-
cous heating in the medium were considered. The main
finding was that velocity slip and temperature jump have
opposite effects on heat transfer. While the velocity slip
tends to increase the Nusselt number, the temperature
jump tends to decrease it. The inclusion the viscous
heating increases the Nusselt number for the fluid being
cooled and decreases it for the fluid being heated. In
these analyses both uniform temperature and uniform
heat flux boundary conditions were considered. The re-
sults were published for the thermal entrance region as
well as for fully developed flow.

The aim of this analysis is to obtain the temperature
profile and thus the Nusselt number for varying values
of the aspect ratio in a microchannel. To obtain the
temperature distribution, one needs to solve for velocity
first. Since there is no such literature available for fully
developed velocity profile, including the velocity slip at
the wall, the integral transform technique was first
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Nomenclature

a long side of the channel

Ay, By, Co 1y, I, Iy, Ty, Ky Koy M
variables defined for simplicity
short side of the channel
specific heat, J/kg K

thermal conductivity, W/m K
Knudsen number
normalization integral
Nusselt number, hD/k
Prandtl number, v/a

heat flux, W/m’

specific heat ratio

fluid temperature, K

fluid velocity, m/s

x,y,z coordinate axes

TNIOPZZITL S

Greek letters
o thermal diffusivity, m?/s

of a geometric definition, o/ = (1 +7y)/y
B slip coefficient, f, = us/um

y aspect ratio

A eigenvalues of the energy equation

/mfp ~ Molecular mean free path, m

I eigenvalues of the momentum equation

v eigenfunctions for the energy equation

v, eigenfunctions for the momentum equation
p density, kg/m’

0 non-dimensional temperature

Subscript

b bulk properties

m average values

] fluid properties at the wall
w wall values

0 inlet properties
Superscripts

* non-dimensional variables

applied to obtain the velocity distribution. For con-
venience, filtering schemes were also applied to obtain
homogeneous boundary conditions [11]. Once the fil-
tering is applied, the general procedure for the integral
transform technique was followed. For velocity and
temperature profiles, the same transform and inversion
formulas were used.

To verify the method, the results for zero Knudsen
number, which corresponds to a macrosize channel,
were compared to the data from previous studies. Nu
values for Kn = 0 are in good agreement with those gi-
ven by Spiga and Morini [5] for all aspect ratios. A
qualitative comparison between the results for non-zero
Knudsen number and the microtube results was also
made.

The analysis can easily be expanded for asymmetric
heating conditions, for example, heating one side while
insulating the others.

The amount of velocity slip and temperature jump
was assumed to be the same at all boundaries and they
were calculated at the bottom wall, y = 0. Throughout
the analysis, the Prandtl number and gas constant were
taken as 0.7 and 1.4, respectively. Since the value of the
Prandtl number has a direct impact on the amount of
temperature jump, Pr = 0.6 and Pr = 0.9 cases were also
investigated.

2. Analysis
The geometry of the problem is given in Fig. 1. The

center of the coordinate system is located at the bottom
left corner of the channel. Heat flux at the wall is con-

A 4

Fig. 1. The schematic of the problem.

stant both axially and along the periphery. In the fol-
lowing two sections, the velocity and temperature
profiles will be obtained analytically.

2.1. Velocity profile

The incompressible momentum equation in the axial
direction is solved to obtain the velocity distribution.
Kavehpour et al. [12] solve the compressible forms of the
momentum and energy equations with slip-flow con-
siderations between two parallel plates. They find that
the effect of compressibility is important for high Rey-
nolds numbers and that the effect of rarefaction is sig-
nificant for the lower Re. For a hydrodynamically
developed flow in a rectangular channel, the conserva-
tion of momentum equation can be written in the fol-
lowing form:

10P  u  Ou

Lo T m
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and the boundary conditions can be written as follows
based on the assumption that the slip velocity is constant
and the same at each boundary

u=us atx=0and a; y=0and b. (2)
The governing equation and the boundary

conditions are non-dimensionalized by the following
parameters:

x o,y
. =T e 3
u , = =T (3)

Eq. (1) takes the following non-dimensional form:

. o Qwr
= ax*Z + ay*Z (4)

and
u'=p, atx*=0,1 and »* =0,y,
where

2
P :a—%, by — % and y:é,

Uty Oz U a
where 7 is the aspect ratio, fi; is the slip coefficient, which
is the measure of the velocity slip at the boundary and P*
is the normalized pressure gradient. A similar definition
of the slip coefficient is given by Shih et al. [13]. At the
end of this section, the slip coefficient will be expressed
in terms of the Knudsen number.

As seen from the above system of equations, the
boundary conditions are non-homogeneous. Therefore,
we are going to apply filtering to eliminate non-hom-
ogeneity. We define a one-dimensional problem in the
y-direction such that it satisfies the boundary condi-
tions of the original problem. Therefore, the velocity at
the top and bottom walls vanishes for the original
problem. We will also drop * for non-dimensional pa-
rameters.

where u,, filtering function, satisfies the following sys-
tem:

d*u,
Wz} — Uy = 0, (63)
u,=f, aty=0 and y=1, (6b)

the solution of the above equation can easily be written
as

e/ +e

y = . 7
u) 1_’_67, ﬁs ()

The governing equation and the boundary conditions
take the following forms after the substitution of Eq. (5)
into Egs. (3) and (4):

o%u  du
P uy:@—t—a—yz, (8d)
u=pf —u, atx=0and x=1, (8b)
#=0 aty=0 and y=1. (8c)

We note here that, when the filtering scheme is ap-
plied, the boundary conditions must be written carefully
to carry the changes along the computation. Now, we
have two homogeneous and two non-homogeneous
boundary conditions. We define the eigenvalue problem
in the y-direction where we have the homogeneous
boundary conditions, and then the other two will be
implemented at the end. The appropriate eigenvalue
problem and corresponding eigenvalues and eigenfunc-
tions for the velocity problem are given in Table 1.

The transform and inversion formulas are written as:

Transform  @(u,,x LA ,ul,;; i(x, ) dy. )
Inversion a(x,y) Z l// lf;;y) 1(fy, ). (10)

The transformation process starts by applying

u(x,y) = u,(y) + a(x,y), (5) Ji ¥, dy to every term in the governing equation
Table 1
The eigenvalue problems/solutions for momentum and energy equations
Eigenvalue problem y=0 y=y Eigenvalue, 4 Norm, N Eigenfunction, ¥
Velocity distribution
Y, o ¥, =0 ¥, =0 _nn N -7 .(m)
=0 Hy N n L, =sin| —
dy? ol Y 2 v 7 y
Temperature distribution
&y ) dy,, dy,, I N =2 (mn )
m oy ) =0 ——=0 ——=0 m = m= w = Cos [ —
g2 dy dy v 2 v y
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The inversion and transform formulas, the eigen-
value problem and integration by parts technique are
utilized to evaluate the integrals in Eq. (11). There-
fore, Eq. (11) is obtained in the following transformed
form:

i - *(*U")P_M“/(l - (="
a2 M= 12 2,5 1 22
nniN, N2 (y? + n?n?)

(12)

s

Transformation of the boundary conditions yields (9)
LU= (r Yy
NI nn P2+ )

atx=0 and x = 1. (13)

N

The solution to the non-homogeneous ordinary dif-
ferential equation, Eq. (12), is obtained analytically and,
after some arrangements, put into the following appro-
priate form:

E:Kl(:umx)P'i_KZ(:unax)ﬁw (14)
where
B, et + B, e tab—1)
K = e 4+ B, e _B,
1+ et
A, el + A, —ty (x=1)
K2 == ¢ + © + Cm
1+ et
B _ _ n ,‘/ "
A,[l D1y oy nmy
" an/z nm 2+ Pl uﬁ(*/z—l—nznz) )
g =17 _ = (=DT
,uﬁman]/2 ,uﬁN,,l/z(y2 + n?n?)

Then, the inversion formula is applied to obtain &

ﬁ(x,y) = Z

n

K (1 90P + Ko (g, x)B) sin (/)
Ny |

(15)

The final form of the velocity profile is obtained by
summing Eqgs. (7) and (15). The value of P is still un-
known in Eq. (15), which is obtained by implementing
the definition of mean velocity

1 b a
um:E/O /Ou(x,y)dxdy‘ (16)

Once Egs. (7) and (15) are substituted into Eq. (16), P
is evaluated as follows:

_ 1 — (L + L),

P
Iy

; (17)

where

_ 1 -7 [
11 - TENy}/Z zn: n A Kl(y,,,x)dx,

L= n]\inl/z ; 1o (n_l) ) /0 K> (py, x) dx,
2(e" — 1)

IEICES

3

The only unknown left is the slip coefficient. We are
going to obtain f; as a function of the Knudsen number.
We use the definition of slip velocity at the wall [7],
which is given by

. Ou
Us = Amfp 6 . (18)
y=0

Once the derivative of the velocity profile is eval-
uvated at y =0 and set equal to u;, the following ex-
pression for the slip coefficient, in non-dimensional
form, is obtained. We note here that the average
value of f, is calculated by integrating over the
length.

o kn _Km(1-¢)
= [ e

n=1

where the Knudsen number is Kn = Ayg/a.

The velocity profiles for y=0.5 and varying
Knudsen numbers are shown in Fig. 2. As expected,
for Kn = 0, velocity at the wall is zero. For increasing
Kn, velocity slip at the wall also increases. Another
observation that one can make is that the maximum
velocity in the channel decreases, as the rarefaction
effects become more significant. Maximum velocity is
1.9920 for Kn = 0, while it is 1.4208 for Kn = 0.12. We
can also see that the magnitude of the slip velocity is
the same along the boundary as defined by the
boundary conditions.

The variation of the slip coefficient, non-dimensional
slip velocity, with respect to the Knudsen number is
given in Fig. 3. For the same Knudsen number, as the
aspect ratio becomes smaller, the value of the slip co-
efficient increases. Table 2 shows slip coefficients for
0<Kn<0.12and 0.1 <y< 1.

2.2. Temperature profile

In the previous section, the fully developed velocity
profile in a rectangular channel for various aspect ra-
tios was determined. In this section we will attempt to
obtain the fully developed temperature distribution for
the same channels subjected to heat flux at all sides.
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y=0.5, Kn = 0.00

2
o

8

< 1.5
>

5

5

'ﬁ-'l 1 L
c

Q

E
Tos
c

[=]

=

0 20 40 60 80 100
Channel height

¥ =0.5, Kn = 0.08

-
(3]

=Y

e
[

Non-dimensional velocity

0 20 40 60 80 100
Channel height

y=0.5, Kn =0.04

-
o

e
n

Non-dimensional velocity
—

0 20 40 60 80 100
Channel height

y=0.5,Kn=0.12

-t
[4,]

Non-dimensional velocity
o
(1)1 —h

0 20 40 60 80 100
Channel height

Fig. 2. Fully developed velocity profiles for different Knudsen numbers at y = 0.5.

Then, the Nusselt number will be obtained for each
case. We start with the conservation of the energy
equation for a thermally fully developed flow in a
rectangular channel.

or o*T T 20
"oz T\ e +6y2 (20)
0.9 1 T
08 ot
L+
r=01 o
o7 7 o
. " . E 3
=02 o *
06| : .
= + o =18 * x
8 osf B w0
2 =05  x
=
§ . x
u_!;-u.a o - L =1 v
N « o
03 : . .
02} T &
[ X138 Ea
& . ; ]
o002 0.04 0,06 a.08 0.1 012

Knudsen number

Fig. 3. The variation of slip coefficient with Knudsen number.

and the boundary conditions are:

fk%—iw:q atx =0, (20b)
k%—i:q atx = a, (20c)
—k%—)z;:q at y=0, (20d)
k%—izq aty =b. (20e)

The left-hand side of Eq. (20a) can be approximated
as [4,5]

T  q(2a+2b)
oz pCplimab

for fully developed flow in a rectangular channel heated
at all boundaries.

The energy equation and associated boundary con-
ditions are non-dimensionalized by the same par-
ameters. The non-dimensional form of the energy
equation is then obtained as

u* L+ 2—620 @
Y - ax*z ay*z’

(21a)
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Table 2
The value of the slip coefficient for varying y and Kn
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Kn b

1 0.834 0.75 0.667 0.5 0.334 0.25 0.2 0.125 0.1
0 0 0 0 0 0 0 0 0 0 0
0.02 0.12 0.13 0.14 0.16 0.2 0.26 0.32 0.37 0.48 0.54
0.04 0.21 0.23 0.25 0.27 0.32 0.41 0.48 0.53 0.65 0.69
0.06 0.28 0.31 0.33 0.35 0.41 0.51 0.58 0.63 0.73 0.77
0.08 0.34 0.37 0.39 0.42 0.48 0.58 0.64 0.69 0.78 0.82
0.1 0.39 0.42 0.44 0.47 0.53 0.63 0.69 0.73 0.81 0.85
0.12 0.43 0.47 0.49 0.51 0.58 0.67 0.73 0.77 0.84 0.87
Table 3
Filtering functions for the energy equation
Governing equation Boundary condition Boundary condition Solution
x=0,y=0 x=1,y=7y
X-filtering 4o, o, 75/ do, i/ o o 1 . e
o2 =0 &2 2 To\em1® Teot®
Y-filtering &0, do, o do, o 0 — o | I
=0 &2 &2 »“2\e—1® T
where with the following homogeneous boundary conditions:
(th/k)’ &:0 atx=0 and x =1, (23b)
with the following non-dimensional boundary con- ? =0 aty=0 and y=7. (23¢)
v

ditions:

aa)g = *D% atx' =0, (21b)
E?)i :Dih atx* =1, (21c)
aayo = —1% aty* =0, (21d)
aa—;i _Di;, aty" =y. (21e)

Similar to the previous case, the boundary conditions
are non-homogeneous. In this case, for convenience, we
define a filtering function in each direction to make the
heat flux zero (homogeneous boundary conditions).
First, the temperature is written as

0(x,y) = 0:(x) + 0,(») + 0(x,),

where 0, and 0, are obtained similar to the u, of the
velocity profile and given in Table 3, where
o =(1+7y)/y. Now, we go back to the governing
equation and substitute equation (22)

@_’_ig— o2
o 0y? -

(22)

—-0,-90

bg)

(23a)

The integral transform technique is again applied to
solve for temperature. The appropriate eigenvalue
problem and solution to this problem are shown in
Table 1. The transform and inversion formulas are the
same as in the velocity problem. We multiply every term
in Eq. (23a) by [j ¥, dy to start the transformation
process. After some simplifications, the transformed
equation is obtained as follows:

a0 ,= o -
0= ———r K 1
di2 ‘m N,L/Zan/z ,;13 [ l(,unax)

+K2(.un7x)ﬁs}D(m7n) +Jm —Pm, (243)

where D, P, and J,, are defined as

D= / sin (ﬂ> cos (m_ny) dy
0 b 7

m [(—1)””’ —l]

_ ) for m # n,
0 for m = n,
of 7 1 e’ mmy
Pm = e’ Y — |d
2N1/2/0 (e”f—l +e“/—le >COS( Y ) Y
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and

_ PO - D=1+ )
(@ + DG+ mm)N

m )

and the required boundary conditions to solve the
transformed system are given as:

EH:O atx=0 and x=1. (24b)

Eq. (24a) is first solved for the homogeneous case (no
source term), and the particular solution is obtained by
considering the right-hand side. These two solutions are
added to each other to yield

= M
0y x) = ( P )e

Me'n . o
e —1)¢ T 20 NN

Z“’: 20y (81 4 et Ha¥)

(12 = 4,)
ZJZ Jm Pm
— o [Pm =TT (25)

where the integration constant is given as

Jip, (1 —et)
1/2 12 Z [ — )

'1 n=1,3
and
and J, =C,f, — B,l.

B,I + A,p,

J =
! 1 +et

To obtain the temperature profile, the inversion for-
mula is applied to Eq. (25), and 0, and 0, are added to it.
The values for bulk mean temperature and average wall
temperatures are needed to calculate the Nusselt num-
ber. Bulk temperature is defined as

1ot
:T/ / u(x7y)9(x7y)dXdya
Y Jo Jo

fand the average wall temperature is obtained from the
following relation [5]:

fol G(X,O)dx-i-ﬁ)l 0(x.7)dx+ [10(0

Y)dy+ [50(1,y)dy
2(1+7) '

Oy =

If there was no temperature jump at the wall, the
Nusselt number would be calculated using

1

Table 4
Fully developed Nusselt number for 0 < Kn<0.12 and 0.1<y<1 at Pr=0,6;0.7;0.9
Kn Pr b
1 0.84 0.75 0.67 0.5 0.34 0.25 0.2 0.125 0.1

0 0.6 3.1 3.09 3.08 3.07 3.03 2.96 293 2.9 2.85 2.82
0.7 3.1 3.09 3.08 3.07 3.03 2.96 2.93 2.9 2.85 2.82
0.9 3.1 3.09 3.08 3.07 3.03 2.96 293 2.9 2.85 2.82

0.02 0.6 2.95 293 2.92 29 2.85 2.76 2.67 2.59 2.35 2.19
0.7 2.99 2.98 2.98 297 2.92 2.85 2.78 2.71 2.49 2.34
0.9 3.07 3.06 3.58 3.05 3.02 2.97 2.93 2.88 2.72 2.59

0.04 0.6 2.76 2.73 2.71 2.68 2.59 242 2.27 2.12 1.75 1.56
0.7 2.85 2.82 2.81 2.79 2.71 2.56 242 2.28 1.92 1.72
0.9 2.98 2.97 2.96 2.94 2.88 2.77 2.66 2.54 22 2

0.06 0.6 2.58 2.53 2.5 2.46 2.33 2.11 1.92 1.75 1.37 1.19
0.7 2.69 2.65 2.62 2.59 2.48 2.27 2.09 1.91 1.52 1.33
0.9 2.86 2.84 2.82 2.79 2.7 2.53 2.36 2.2 1.79 1.59

0.08 0.6 24 2.34 2.3 2.25 2.1 1.85 1.64 1.47 1.11 0.95
0.7 2.53 2.48 2.44 24 2.26 2.02 1.81 1.63 1.25 1.08
0.9 2.74 2.7 2.67 2.63 2.52 2.29 2.09 1.91 1.5 1.31

0.10 0.6 2.23 2.17 2.12 2.06 1.91 1.04 1.43 1.27 0.94 0.79
0.7 2.38 2.32 2.28 2.22 2.07 1.81 1.59 1.42 1.06 0.9
0.9 2.61 2.56 2.52 2.48 2.34 2.09 1.87 1.68 1.29 1.11

0.12 0.6 2.05 2.01 1.96 1.9 1.74 1.47 1.27 1.11 0.81 0.69
0.7 2.24 2.17 2.12 2.06 1.9 1.63 1.42 1.25 0.92 0.78
0.9 2.49 2.43 2.38 2.33 2.18 1.9 1.68 1.5 1.12 0.96
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In the presence of such a difference between the fluid
and the wall temperatures, we use the following relation:

2R o Kn

where the temperature jump at the wall for Cartesian
coordinates is given as [7]:
2R Iy OT

TS_TWZ—I—O—RF@FO’ (28)

which takes the following non-dimensional form with

00/y|,_o = —(a/Ds):
2R o Kn

0, =0y = ———= 5 5 29
1+R2 Pr (29)

3. Results and discussion

The effects of rarefaction and channel size on the
velocity distribution were shown at the end of the pre-
vious section. In this section, we are going to discuss the
same effects for the heat transfer. The fully developed
Nusselt number values are given also in Table 4 for all
different cases considered here.

In Fig. 4, the effect of Kn on heat transfer for varying
aspect ratios is shown. As seen in the figure, when Kn
increases the Nusselt number decreases, regardless of the
value of the aspect ratio, due to the increasing temper-
ature jump. However the decrease in Nu is more sig-
nificant for smaller values of y. Going from Kn =0 to
Kn=0.12 causes a 31% decrease in Nu for y=1,
whereas the decrease is 72.4% for y = 0.1. This behavior
may also be explained by the increasing rarefaction as
the channel size is reduced.

a5 v T T T T
g
l"*. 0 y=1
o) S e
25 * % ioos @
Lk .
+ . . e [
5 O. * ®.,
H .
2 (=14 B
2 2 B " X,
a - =02 *
E + !
‘0. *
15 .
[o}8
+
| ¢=0.1
| o
1k . ]
I
i
0.5 e L . L 1
] 0.02 and 0.06 0.08 0.1 012

Knudsen number

Fig. 4. The effect of Knudsen number on fully developed
Nusselt number for varying aspect ratios.

as T T T T : —

> .

Nusselt number

——  Present study

© 9 Spigaand Morinl

0.5 [ L L L \ . .
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Aspect ratio

Fig. 5. The effect of channel size on the Nusselt number for
varying Kn.

The effect of channel size can also be seen in Fig. 5.
The size effects become more significant when the aspect
ratio drops below 0.5. This can be explained from the
mathematical viewpoint: ¢ in Eq. (29) takes higher
values as y decreases which increases the temperature
jump. For example, while o/ =1 for y =1, it is 5.5 for
p = 0.1. The results for zero Knudsen, a conventionally
sized channel, are also compared to the results from
Spiga and Morini [5] for the same boundary conditions.
They show a good agreement except for very small
values of the aspect ratio.

When the temperature jump is not taken into ac-
count, in other words, only the effect of velocity slip is
considered, the Nusselt number increases with increasing
Knudsen numbers. The results are seen in Fig. 6. In this
case, the increment is larger for smaller channels due to

Nusselt number

L L L L .
0.02 0.04 0.06 0.08 0.1 0.12
Knudsen number

25)
0

Fig. 6. Variation of the fully developed Nusselt number with
Knudsen number without considering temperature jump at the
wall.
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the increase in the magnitude of the slip velocity. The
same behavior was found for microtubes by several re-
searchers [8,9].

The effect of the Prandtl number can be seen in Table
4. Besides the fact that Pr increases Nu by reducing the
temperature jump, it should be noted that as the aspect
ratio decreases, the change in Nu due to Pr is amplified.
Nu changes 17.7% from Pr=0.6 to Pr =0.9 for y =1,
while the amount of change is 28.1% for y = 0.1.

Viscous heating is not considered in this analysis. In
their recent paper, Tunc and Bayazitoglu [10] show the
effects of viscous dissipation for a cylindrical micro-
channel. In the current analysis, the obtained Nusselt
number variation with the Knudsen number is similar to
the one given in [10] for a cylindrical geometry. There-
fore, one can expect the effect of viscous heating in a
rectangular channel to be the same as the effect in a
cylindrical one.
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